INTERNATIONAL INSTITUTE
FOR
AERIAL SURVEY
AND
EARTH SCIENCES (ITC)
ENSCHEDE,THE NETHERLANDS

S-TRANSFORMATIONS AND ARTIFICIAL COVARIANCE MATRICES IN PHOTOGRAMMETRY

M.MOLENAAR

ISP COMMISSION III, PRESENTED PAPER

FOURTEENTH CONGRESS OF THE INTERNATIONAL SOCIETY FOR PHOTOGRAMMETRY, HAMBURG 1980
515.

S-transformations arid criterion matrices in photogrammetry

At preserit the densification of geodetic point fields, by mears of aerotriangulation seems to reach a precisior comparable to the precision of terrestrial metrons. This fact requires ancther attitude of photormmetrists with respect to round cortrol, which in tre fiture cirirot be corisidered as nor-stochastic anymore.
Criterion matrices (artificial covariance matrices) could he useful ther to desorine the precision of given grourd control poirct. ard to evaluate tre precision of point field densifications. S-transformations will give a frood tool to link up photogrammetric blocks with given geodelio pornt fields. This paper will discuss the concept of ariterion matricen and S-tranformations arid their possible application in photogrammetry.

Die Genauigkeit, die such kei der Verdichturis vori Festpunktretzen mittels Aerotrlangulation mittlerweilen erreichen ï̈̈sst, steht derjeriogerı aus terrestrichen Methoderı kaum rach. Dies verlangt nach einer arıdererı Einstellunc der Photogrammetristen gegenüber den Pawspurkte, die künftitr nicht merre als fehlerfrei betrachtet werden könrer..
Kriterium Matrizen (künctliche Koverianz Matrızeri) könsten dazu dieneri, un die (Genauigkeit der gegeberi Festpunkte zu beschreiveri und un die Genauigkeit der Netzverdjohtung zu beurteilen. S-Transformationer bieten eire gute Möglichkeit photogrammetr:sche Blocks mit dem eegeberien Punktfeld zu verbinden. Der vorlıegende Artikel erläutert das Konsept der Kriterium Matrizen und S-Transformation swwie dereri mögliche Anwendurig ir der Photogrammetrie.

La densification des résaux éodésiques, au moyer de l'zérotrianculatiori, semble atteirdre actuellement une précision comparable à celle des méthodes terrestres. Ce fait nécessite une autre attıtude des photogrammètres quant au canevas terrestre qui ne pourra plus être considéré comme rior-stochastique. Des matrices-critère (matrices de covariarice artificielles) pourraient alors être utiles pour décrire la précision des poirts d'appul doriés et pour évaluer la précision de densifications de points terrestres. Lés transformations "S-systèmes" peuvert doriner un bon outil pour relier des blocs photogramétriques avec des résaux céodésiques durnés. Cet article discutera le corıept des matrices-critère et des transtormatiors "S-s.astèmes" et leur application possible en photogrammétrie.
?. A skeloh of the problem
The densification of geodetic poirtfields har tradionally been based on the assumption trat it could start from given poirts, which are not stochastic. These points were determined by a higher order survey, for which the obtained precision was corisidered much better thar that of the densification survey.
Experience with modern survey equipmerit and methods, shows however, that iri many cases this assumption cannot be mairitained any loneer. Moreover, given coordinates should be entered as stochastic variates (okservations) ir the adjustmert of lower order networks. Tris complicates the adjustment considerably arid a revision of computing methods seems to ke necessary. An adjustmert iri two steps seems to be a proper answer to these problems. In the first step the network is adjusted without given points. This means that the strencth of the "free" network is analysed and the search for gross observational errors is not effected by giver courdiriates. The coordinates ot points in the retwork are then computed iri a local system (see [3]). The connection to given coordinates in the second step gives the opportunity to test these independently of the opeervations adjusted ard checked in the first step.
Ir photogrammetry one meets a similar situation. In the traditionai approach ground control is entered in the adjustment of aerotriarigulation blocks as not stochastic. The development of aerotriangulation during the seventies made clear, however, that this approach is not always justified. The precision of photogrammetric point determination reaches in some cases the same level as the precision of some terrestrial surveys. The coordinates of ground control points should then be entered as stochastic variates irı the block adjustment. In most block adjustmert programmes, this is not possible, so the computing procedure shoild be modified.

The method given for terrestrial retworks can be used here as well, this will be explaned iri sections 3.1-2. The terrestrial coordinates are now considered as being stochastic, this fact raises the question of what variance-covariance matrix should be used. In many cases the original matrix is not available anymore, that is why an artificial matrix should be used instead. The latter is supposed to describe the precision of the points "sufficiently". Grafarerd [A,5], Paarda [1] and Molenaar [8] give suggestions for these artifical matrices.
As S-transformations and artifical covariance matrices appear to be indispensible in the pruposed method of computation, their meaning will be explained in the following sections.

2. S-transformations and criterion matrices

We shall first explain the meaning of S-transformations and artificial covariance matrices in a planimetric coordinate system, because they are easy to understand. Theri follows a sketch of the gereralisation to threedimensional space as given in [.8!.

2.1. S-transformation ir plarimetry

Consider a planimetric independent model block. The adjustment of such a block can be made without ground control. For the coordinates of all points in the block approximate values will be introduced to initiate the computations. If the coordinates of two points are kept as fixed, then corrections for the others will follow from the adjustment. The two fixed poirts are called "S-base" [1]. The result of this procedure is a set of coordinates which gives the positioning of the points in the block relat-
ively with respect to the S-base. The variance-covariance matrix of these coordinates expresses the precision of this relative positioning.
If another S-base is chosen, another set of coordinates will be found and another variance-covariance matrix. So one should not speak about
"absolute" coordinates and "absolute" precision, because they are always relative with respect to an S-base. It is better to talk about "S-systems". S-systems are specified by the choice of an S-base. It is possible to transform directly from one S-system to another, by means of S-transformations.
Suppose we want to transform from an S-system with base (u,v) to a system with base (r, s) and in both systems we have the same approximate values for the coordinates :
(1.1) $\left[\begin{array}{ll}x_{i}^{0} & (u, v) \\ y_{i}^{0} & (u, v)\end{array}\right]=\left[\begin{array}{ll}x_{i}^{0} & (r, s) \\ y_{i}^{0} & (r, s)\end{array}\right]=\left[\begin{array}{c}x_{i}^{0} \\ y_{i}^{0} \\ y_{i}^{0}\end{array}\right]$

- index i indicates point number
- superscript (u,v) (r, s) indicates S-system
- superscript ${ }^{\circ}$ indicates approx. values.

The expectational values for the coordinates are not equal in both systems, but they do not differ very much :

$$
\left.\left[\begin{array}{l}
\widetilde{x}_{i}(u, v) \tag{1.2}\\
\widetilde{y}_{i}(u, v)
\end{array}\right] \approx\left[\begin{array}{l}
\widetilde{x}_{i}(r, s) \\
\widetilde{y}_{i}(r, s)
\end{array}\right] \quad \sim \begin{array}{l}
\text { denutes mathematical } \\
\text { expectation }
\end{array}\right] \quad \text { }
$$

The transformation from (u,v) - to (r,s) - system is then :

$$
\left[\begin{array}{l}
\widetilde{x}_{i}(r, s) \tag{2.1}\\
\widetilde{y}_{i}(r, s)
\end{array}\right]=\left[\begin{array}{cc}
\widetilde{a} & -\widetilde{b} \\
\tilde{b} & \widetilde{a}
\end{array}\right]\left[\begin{array}{l}
\widetilde{x}_{i}(u, v) \\
\tilde{y}_{i}(u, v)
\end{array}\right]+\left[\begin{array}{c}
\widetilde{d}_{x} \\
\widetilde{d}_{y}
\end{array}\right]
$$

and

$$
\left[\begin{array}{cc}
x_{i}^{0}(r, s) \tag{2.2}\\
y_{i}^{0} & (r, s)
\end{array}\right]=\left[\begin{array}{cc}
a^{0} & -b^{0} \\
b^{0} & a^{0}
\end{array}\right]\left[\begin{array}{cc}
x_{i}^{0} & (u, v) \\
y_{i}^{0} & (u, v)
\end{array}\right]+\left[\begin{array}{c}
d_{x}^{0} \\
d_{y}^{0}
\end{array}\right]
$$

From (1.1) we find $a^{0}=1, b^{0}=0, d_{x}^{0}=d_{y}^{0}=0$ so when we neglect second order terms in the linearisation of (2.1), then the differerce emuation of (2.1) and (2.2) is :
with $x=x-x^{0}$ etc.
For the coordinate computation in the $(r, s)-s y s t e m\left(x_{r}^{0}, y_{r}^{0}\right)$ and $\left(x_{s}^{0}, y_{s}^{0}\right)$ are kept as fixed and thus :
$\left(\tilde{x}_{r}(r, s), \tilde{y}_{r}^{(r, s)}\right)=\left(x_{r}^{0}, y_{r}^{0}\right)$ and $\left(\tilde{x}_{S}^{(r, s)}, \tilde{y}_{S}^{(r, s)}\right)=\left(x_{S}^{0}, y_{S}^{0}\right)$
hence :

$$
\begin{align*}
& \left(\tilde{\Delta X}_{r}(r, s), \tilde{\Delta}_{r}(r, s)\right)=(0,0) \\
& \left(\widetilde{\Delta x}_{s}(r, s) \quad \tilde{\mathrm{y}}_{\mathrm{S}}(\mathrm{r}, \mathrm{~s})\right)=(0,0) \tag{4}
\end{align*}
$$

With (4) the transformation elements can be eliminated in (3). The result is :

where $x_{r i}=x_{i}-x_{r}$ and $y_{r i}=y_{i}-y_{r}$ etc.
Some rewriting using (4) leads to :
(5.1)

$$
-\left[\begin{array}{cc}
x_{r i}^{0} & -y_{r s}^{0} \\
y_{r i}^{0} & x_{r i}^{0}
\end{array}\right]\left[\begin{array}{cc}
x_{r s}^{o} & -y_{r s}^{0} \\
y_{r s}^{o} & x_{r s}^{o}
\end{array}\right]^{-1}\left[\begin{array}{c}
\widetilde{\Delta x_{s}}(u, v) \\
\underset{\Delta y_{s}}{ }(u, v)
\end{array}\right]
$$

Then :

$$
\left[\begin{array}{cc}
\tilde{x}_{i} & (r, s) \tag{5.2}\\
\tilde{y}_{i} & (r, s)
\end{array}\right]=\left[\begin{array}{c}
x_{i}^{0} \\
y_{i}^{0}
\end{array}\right]+\left[\begin{array}{cc}
\tilde{\Delta x}_{i} & (r, s) \\
\tilde{y}_{i} & (r, s)
\end{array}\right]
$$

So (5.1) and (5.2) give the transformation from (u,v) - to (r,s)-system for coordinates, and the coefficients of (5.1) should be used to transform the variance-covariance matrix.
One should notice that when developing (5.1) we made no reference to the S-base of (u,v)-system. This means that the transformation can be applied to any S-system. If no base has been specified in arı S-system, it is
called a (a)-system.
An importart fact is that (5.1) has been derived from a differential similarity transformation. This implies that argles ard ratios of lerigth are invariant with respect to S-trandformations.

2.2. Criterion matrices

In this section we will concentrate or the ideas of Faarde [1], which proved to be very useful in the adjustmert of derisification retworks, whereas the author does not know ary practical applications of the work of Grafarend.
The artificial covariance matrix, also called "criterion matrix", of Baarda has the followin¢ characteristics : It gives circular point and relative standard ellipses, whereas variances of distance ratios and ariples are only dependent on the shape and size of the triangles from which they are taken and not on the actual position of the triangle in the retwork. In an (a)-rystem, that is in a fictious coordinate system without S-base the submatrix for two points is :

	x_{i}	y_{i}	x_{j}	y_{j}
x_{i}	d^{2}	0	$d^{2}-d_{i}^{2}$	0
y_{i}	0	d^{2}	0	$d^{2}-d_{i j}^{2}$
x_{j}	$d^{2}-d_{i j}^{2}$	0	d^{2}	0
y_{j}	0	$d^{2}-d_{i j}^{2}$	0	d^{2}

$$
\begin{aligned}
& -d^{2}=\text { a parameter which will } \\
& \text { be eliminate'i } \quad \cdots \text { an } \\
& \text { S-trans formatiori } \\
& -d_{i j}^{2}=\left(c_{0}+c_{1} l_{i j}\right) \mathrm{cm}^{2} \\
& -1_{i j}=\begin{array}{l}
\text { distarice betweeri poirita i } \\
\text { arid iri } \mathrm{km} \text {. }
\end{array} \\
& \text { - } c_{0} \text { arid } c_{1} \text { are the parameters } \\
& \text { which describe the precision of } \\
& \text { the point field. }
\end{aligned}
$$

By means of (5.1) this matrix can be transformed to a real S-system. The use of this matrix is twofold. First : it serves during the reconnaissance phase of a network as a criterior for the precision of the coordinates to be computed. The matrix G obtained from the adjustment of the network is compared with the criterior matrix H via the generalised eigen value problem : $|G-\lambda \cdot H| \leqslant 0$ irn which both G and H are given with respect to the same $S-$ base.
If all eigen values are $0<\lambda$ min, λ max $\leqslant 1$ then variances computed from G are always less thar or equal to variances computed from H, thus H enives an upperbound for the precisior of the network (ree[1] §8,[2]).
Second : the matrix H can replace G in future computations. This means that G has not to be stored with the coordinates, kut the matrix H carı be generated instead when required.
The use of the matrix as a criterion for precision seems to be more meaningful for terrestrial networks thari for photogrammetric blocks, as for the latter the possibilities for improving the structure are limited. For the adjustment of aerotriangulation blocks one could make use of this matrix to describe the precision of grourd control. This is importart when use is made of old poirt fields for which the irformation about the exact structure of the variance-covariance matrix is rot available anymore. Values have to be chosen then for the parameters c_{0} and c_{1} depending on the type of network from which the coordirates have been computed. Once the choice has been made the coordinates of the giver points enter the adjustment as observations with the generated covariance matrix. The advantage of this matrix over a diagonal matrix is that it takes into account the correlation between points, which in pririciple always exists. This correlation is dependent on the distance between pointa.

The effect of the matrix on the final computed coordinates is in general not so larse. The matrix is important however, for the evaluation of the precision and reliability of the firal results and for the testirig of the civen points.

2.3. Three-dimernsiorial space

The two-dimensional approach cari ke applied in mary cases, but the development of photogrammetry in the severties as a method for spatial point determination requires a three-dimensional S-transformation ard criterion matrix. These can be obtaired as a generalisation of the planimetric solution. This has been elaborated in [8], a short sketch will be given iri this rection.
A cartesian x, y, $z-s y s t e m$ must be defined $b y$ means of seven parameters. These are the coordinates of two points plus orie more parameter. For the latter one is apt to chose a coordinate (in most cases the z-coordinate) of a third point. An analysis of the coordinate computation in R_{3} leads however to a principal choice, which is somewhat different.
When two poiruts irı R_{3} are kept as fixed, the plarie contairing these two plus a third poirt car rotate freely on the line connecting the first two. Only when the direction of the normal vector to this plane is kept as fixed as we: , the position of the third point can be determined by means of arı observed length ratio and angle. The position of other pointe can be determined relatively with respect to the first group of three by means of length ratios and angles. If r arid s are the first two points and t is the third, then this S-system is called (r, s; t)-system.
When the normal vector is parallel or nearl: parallel to the a-axis of the coordinate system, then the choice of the z-coordirate of the third point as severth element is arı allowable approximation. Moreover, in rearly flat terrain one can use the x, y, z-coordinates of two points and the $z-c o o r-$ dinate of a third poirtt as an S-base.
The formulae for S-transformations in R_{3} between systems with S-bases of a rigorous type are much more complicated than those in R_{2}.
They will not be given here. For systems with the less rigorous type of S-base, the S-transformation can be derived according to the method of section 2.1. One should keep irı mird, however, that the latter is only applicable urder certain restrictions.
From experience with photogrametric blocks and terrestrial networks we know that the relative positioning of points in the vertical sense is less precise than in horizontal serise. We also learned that the vertical positionire is to a great extert stochastically indeperdent of the horizontal positioning. These considerations were important for the construction of a three-dimensional criterion matrix in [.8.]. Another important feature was the fact that large pointfields are approximatcly curved over a sphere. The matrix developed iri [8] consists of two independent submatrices defined in a fictitious coordiriate system : one for spherical heights and one for "horizontal" positioning over the sphere. These submatrices are designed. so that the precision of the relative positionirg of points is only dependent or that relative positioning. itself, ard rot on the actual coordinates of the points. In this way a covariance matrix has been obtined for pointfields with a "homogereous and isotrcuic inner precision". Irıer precision means the precision of the anceles and length ratios (and spherical distances) which desribe the internal eremetry of the retwork completely. An S-transformation will transform the matrix from the fictitious coordinate system to an operational S-system.
Earth curvature is negligible for pointfields which cover small areas. In that case the three-dimensional criterion matrix of [. 8] con he simpli-
fied to a combination of the matrix for heights and the matrix for the complex plane as given in [1].

3. Application in photogrammetry

3.1. Connection of photogrammetric blocks and ground control

Section 2.1. referred to the use of S-systems for block adjustment.
 This will be elaborated in this section. Suppose terrestrial (x, y)-coordinates have been computed for points in a network with (u, v) as the S-base. A point densification will be made for a part of the network by means of aerotriangulation. According to the method proposed in section 2.1. an internal block adjustment will be made first independent of ground control. To be able to compute coordinates, points r and s
will be used as an S-base with their terrestrial coordinates, which are then considered as not stochastic. For other ground control points in the block we obtain now two sets of coordinates.

$$
\left[\begin{array}{l}
x_{i}^{(p)^{(r, s)}} \\
y^{(p)^{(r, s)}}
\end{array}\right]
$$

the photogrammetric coordinates
computed with respect to base (r, s)
and

$$
\left[\begin{array}{l}
\underline{x}^{(t)^{(u, v)}} \\
\underline{y}^{(t)^{(u, v)}}
\end{array}\right]
$$

the terrestrial coordinates with respect to base (u,v)

These two sets of coordinates have been computed in different S-systems. Therefore we find for expectational values :

$$
\left[\begin{array}{c}
\tilde{x}_{i}^{(p)^{(r, s)}} \\
\widetilde{y}_{i}^{(p)^{(r, s)}}
\end{array}\right] \neq\left[\begin{array}{c}
\tilde{x}_{i}^{(t)^{(u, v)}} \\
\tilde{y}_{i}^{(t)^{(u, v)}}
\end{array}\right]
$$

But if we apply (5.1) to transform the terrestrial coordinates from (u,v)system to (r, s)-system, we obtain the condition equations :

$$
\left[\begin{array}{c}
\tilde{x}_{i}^{(p)^{(r, s)}} \\
\tilde{y}_{i}^{(p)^{(r, s)}}
\end{array}\right]=\left[\begin{array}{c}
\tilde{x}_{i}^{(t)^{(r, s)}} \\
\tilde{y}_{i}^{(t)^{(r, s)}}
\end{array}\right]
$$

if we suppose that there are no systematic deformations in the block. The connection of the block with the terrestrial coordinate sustem can be completed by means of an adjustment according to standard problem I based on these condition equations. From this adjustment all photogrammetric
points will get a correction due to their correlation with
${\underset{x}{i}}_{(p)^{(r, s)}}$ and $\underline{y}_{i}^{(p)^{(r, s)}}$. The terrestrial coordinates will also get a correction unless these are made zero for practical reasons in a so-called "pseudo least squares" solution (see [1].§7).
The condition equations make a simple test possible for the detection of gross errors in the terrestrial coordinates. The solution according to standard problem I allows an adjustment in steps i.e.: step 1 an adjustment using ground control points at the periphery of the block and step 2 an adjustment using points in the centre of the block. So the practice of using test blocks does not have to be changed, but the tests for finding deformations in the blocks can be made more rigorous according to [7]. Some experiments on this method of adjustment have been made by Jørgensen [6]. Although the method has been explained for planimetric blocks, it can be applied for three-dimensional blocks as well.

3.2. Stripwise block adjustment

Another possible procedure for block
 adjustment is the following :
Suppose we have a bundle block which will be used for point densification in a three-dimensional network with S-base (u,v;w). In the first step of computation the terrestrial points are transformed from base (u,v;w) to (2,3;1). The first strip is adjusted and coordinates are computed with respect to S-base (2,3;1). Then a connection is made between the terrestrial coordinates and the strip coordinates according to the method of section 3.1 . After this step the strip I coordinates and terrestrial coordinates furm one system ($(2,3 ; 1)$-system) which is then transformed to base (4,$5 ; 2$). The same procedure is repeated for strip II and soon until the last strip has been adjusted. The final result is a rigorous bundle block adjustment where the block coordinates form one system with the terrestrial coordinates. If required, the whole system can be transformed back to the original base (u,v;w).
In this procedure only a small set of equations has to be solved (one strip) per step of the adjustment, on the other hand sufficient background memory should be available for the variance-covariance matrix of the computed coordinates to be able to find the corrections for these coordinates after each step of adjustment. In this way one could think of a block adjustment which runs parallel with the measuring process.

M. Molenaar

I.T.C. - Enschede

January 1980

1. Baarda, W. : S-transformations and criterion matrises.

- Netherlands Geodetio Commission, vols. nrs. 1, 1973.

2. Bouloucos, T. : The reliability of the observations of points in planimetric independent model blocks. - I.T.C.-Jourrisl 197,-2.
3. Bouw, T. : On the evaluation of eround control data. Molenaar, M. - I.S.P. Corgress Hemburg 1980, pres. paper com. III.
4. Grafererd, E. : Genauigkeitsmasse geodëtischer Netze.

- Deutsche geodätische Kommission, Reihe A, Heft nr. 75, 1972.

5. Grafarend, E. : Geodetic applications of stochastic processes.

- Physios of the Earth and planetary Iriteriors, 12-19/6.

6. Jфrgensen, J. : A comparison of the precision ard reliability of terrestrial coordinates with thase obtained from photogrammetry.

- M.Sc. thesis P2 course, I.T.C. Enschede, 1980.

7. Molenaar, M. : Essay on emperical accuracy studies in aerial e.a. triangulation.

- I.T.C.-Journal 1978-1.

8. Molenaar, M. : A further inquiry into the theory of S-transformations and criterion matrices.

- in preparation, I.T.C. Enschede.

